Schedule

Week

  Date Topic  
   1 Th 09/22 Review of the course syllabus. Introduction and basic concepts. Sections 1.1-1.4.  Set Theory
Solutions
   2 Tu 09/27 Definition of probability and finite sample spaces. Sections 1.5-1.6.  
   Th 09/29 Counting methods. Combinatorial methods. Sections 1.7-1.8. Counting
Solutions
   3  Tu 10/04 Union of events. Conditional probability and independent events. Sections 1.10 and 2.1-2.2. Cond Prob
Solutions
    Th 10/06 Bayes' Theorem. Section 2.3.  
   4  Tu 10/11 Discrete random variables. Examples of discrete random variables. Sections 3.1, 5.1-5.5. 
Quiz #1.
 
    Th 10/13 Examples of discrete random variables. Sections 5.1-5.5  Dscrt RV 
Solutions
   5  Tu 10/18 Continuous random variables. The CDF. Sections 3.2-3.3.   Cnt RV 
Solutions
    Th 10/20 Bivariate distributions and marginal distributions. Sections 3.4 and 3.5. Biv RV
Solutions 
   6  Tu 10/25 Review  
    Th 10/27 Midterm  
   7  Tu 11/1 Conditional distributions. Section 3.6 

 Cond Dst
 Solutions

    Th 11/3 Functions of random variables. Sections 3.8-3.9.

 Fnct
 Solutions

   8  Tu 11/8 Markov chains. Section 3.10   
    Th 11/10 Expectation and variances. Section 4.1-4.3 and 5.1-5.5.  

 Exp
 Solutions

   9  Tu 11/15 Covariance and conditional expectation. Sections 4.6-4.7. 
Quiz #2.
 
    Th 11/17 The normal distribution. Markov and Chebyshev's inequalities. The law of large numbers. Sections 5.6, 6.1-6.2.

 Normal
 Solutions

  10  Tu 11/22 The law of large numbers and the central limit theorem. Sections 6.2-6.3  
    Th 11/24 THANKSGIVING  
  11  Tu 11/29 More CLT examples. Other distributions: the gamma and beta distributions. The Poisson process.   
   Th 12/01 Review. 
Quiz #3 (optional).
 
   Mo 12/05 Final (two hours: 9:00 to 11:00)
 
AttachmentSize
PDF icon fnct.pdf88.76 KB
PDF icon exp.pdf93.56 KB
PDF icon cnddr.pdf87.24 KB
PDF icon normal.pdf71.23 KB
PDF icon soluc_fnct.pdf98.5 KB
PDF icon soluc_cnddr.pdf95.38 KB
PDF icon soluc_exp.pdf98.21 KB